DELcraFT Works: CleanEra Project

Cost-effective Low Emissions and Noise Efficient Revolutionary Aircraft

DELcraFT Works: CleanEra Project

- Multi disciplined international design team consisting of:
 - Ca. 10 PhD/Post-doc researchers, each in a different disciplines
 - Several MSc students
- Combine all knowledge available in Faculty of Aerospace Engineering in a showcase for industry

Cost-effective Low Emissions and Noise Efficient Revolutionary Aircraft

CleanEra Team

Team members

- Wasim Arshad
- Dipanjay Dewanji
- François Geuskens
- Chara Lada
- Marios Kotsonis
- Arvind Rao
- Marcel Schroijen
- Durk Steenhuizen
- Michiel Straathof
- Hui Yu

Partners

- Master students
 - Ingmar van Dijk
 - Jochem Kuiper
 - Zeger van der Voet
 - ...

Trends

Aircraft demand will grow at an ever increasing rate

Trends

Trends

A revolutionary approach is therefore needed

Revolutionary designs are possible

 Military aircraft industry has explored more revolutionary designs such as:

- Blended Wing Bodies: B-2
- Dynamically unstable aircraft: F-16
- High altitude: SR-71 Blackbird
- Etc.

Drag Reduction

Aerodynamic Shape Optimization

 Optimal aerodynamic shape by means of Comput. Fluid Dynamics

Potential flow, Euler, Navier-Stokes

Possible optimization methods:

Adjoint equation method, genetic algorithms, particle swarm optimization

More efficient flying

- Advanced procedures
 - Approach &Landing without thrust
 - But with enough flexibility for ATC
 - And safe margins to start enigines
 - Optimal routing

High-Lift Devices

Sade's goals

- Develop a high-lift configuration that will allow Natural Laminar Flow (NLF) in its retracted state
- Nose section is to be slotless -> impact on C_{L max}
- Flap at TE is to be single slotted
- Smart structures are to be applied

Figure 1.4: a) slat, b) conventional droop nose, c) smart leading edge device

Structure - Traditional

Structure - Traditional

Structure - Traditional

Back to the Future...

Vickers Wellington used a geodesic construction method, which had been devised by Barnes Wallis (1936)

Structure - New

Metallic/Thermoplastic Pressure Resistant Inner Skin

Carbon Fiber Grid

Pressure fuselages

- Fiber reinforced membrane
- Beams are integrated as longitudinal beams in aerodynamic shell (improve structural integrity of aerodynamic shell)

Engines

Geared Turbo fan

Inter cycle cooling

Improved turbine mat.

Advanced combustion

Integration of Technologies

With these technologies a step change is possible

Effect of Alternative fuels?

e.g. avoid biodiversity loss

Biofuels

FLAMINGO

FEASIBILITY STUDY AND IMPACT ASSESSMENT ON THE USE OF ALTERNATIVE FUELS, INCLUDING BIOFUELS, FOR AVIATION

TENDER NO. TREN/F2-408/2008

LH2

Many possibilities, but...

Enormous change that the first will go bankrupt:

- •Excessive cost
- •Long development times
- •Long certification times
- Uncertainties and risks
- •Etc.

